Оптимизационные модели в маркетинге
Страница 1

Оптимизационными

задачами,

в экономике называются экономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия (критериев) варианта использования наличных ресурсов (материальных, временных и т.д.). Решаются такие задачи с помощью оптимизационных моделей методами математического программирования.

В отличие от дескриптивных, т.е. описательных моделей, примером которых могут служить рассмотренные выше балансовые модели, оптимизационные модели наряду с уравнениями или неравенствами, описывающими взаимосвязи между переменными, содержат также критерий для выбора, называемый функционалом, или целевой функцией. Таким образом, общая структура этих моделей состоит из целевой функции, принимающей значения в пределах ограниченной условиями задачи области (области допустимых решений), и из ограничений, характеризующих эти условия. Целевая функция в самом общем виде определяется тремя моментами: управляемыми переменными, неуправляемыми параметрами (зависящими, например, от внешней среды) и видом (формой) зависимости между ними (видом функции). Если обозначить критерий оптимальности через U, управляемые переменные – параметры – = = (xi), параметры – (pj), заданные пределы (область) изменения управляемых = (pj), заданные пределы (область) изменения управляемых переменных – М, то общий вид оптимизационной модели будет следующим:

Задачи вида (25.27) решаются методами математического программирования, которое включает в себя линейное, нелинейное, динамическое, целочисленное программирование и т.д. Выбор методов математического программирования для решения оптимизационных задач определяется видом целевой функции f, видом ограничений, определяющих область М, и специальными ограничениями на управляемые переменные (например, требованием их целочисленности). Решение задачи получения управнения (25.27) обычно называется оптимальным решением, или оптимальным планом.

Рассмотрим прежде всего оптимизационные задачи, сводящиеся к задачам линейного программирования (ЗЛП). В общем виде такая задача может быть сформулирована, например, следующим образом.

Найти вектор (х1, х2 . хn), максимизирующий = (х1, х2 . хn), максимизирующий линейную целевую функцию: линейным функциональным ограничениям:, а также удовлетворяющий линейным функциональным ограничениям:

Кроме того, искомый вектор должен удовлетворять и прямым ограничениям:

Задача (25.28) может быть записана в канонической форме, при которой функциональные ограничения имеют вид равенств. Это достигается путем прибавления к левым частям этих ограничений т дополнительных неотрицательных переменных. ЗЛП в канонической форме решается симплексным методом, в то же время для некоторых ЗЛП специального вида разработаны соответствующие методы (алгоритмы) решения.

Некоторые из них не связаны непосредственно с алгоритмом симплексного метода, как, например, метод потенциалов для решения транспортной задачи; другие же в качестве составных элементов используют вычислительные процедуры симплексного метода. В качестве примера последних можно привести метод Гомори (метод отсечений) для решения задач линейного целочисленного программирования.

Оптимизационные задачи, сводящиеся к задачам линейного программирования, широко используются в процессе экономико-математического моделирования (они рассматриваются ниже). Однако задачами линейного программирования не исчерпываются все виды оптимизационных экономических задач, так как во многих случаях целевая функция задачи и ограничения на область допустимых решений не удовлетворяют условиям линейности. Тогда применяются специальные методы нелинейного программирования, например метод множителей Лагранжа, динамического и имитационного программирования и др.

Страницы: 1 2 3 4 5 6

Смотрите также

Формирование сбытовой политики
Формирование сбытовой политики основано на использовании элемента комплекса маркетинга «доведение продукта до потребителя», характеризующего деятельность организации, направленную на то, чтобы сде ...

Формы активного продвижения товаров (услуг)
♦ Реклама как инструмент эффективного участия В целевом сегменте ♦ Паблик рилейшнз и имидж малой организации ♦ Стимулирование сбыта - резерв продвижения товара ♦ Выставочно-я ...

Сущность аудита
Аудит имеет уже достаточно большую историю. Первые независимые аудиторы появились еще в XIX в. в акционерных компаниях Европы. Слово «аудит» в разных переводах означает «он слышит& ...