7.2. Исследование и анализ рынков
Страница 14

основан на использовании более чем одной независимой переменной в уравнении регрессии. Это усложняет анализ, делая его многомерным. Однако регрессионная модель более полно отражает действительность, так как в реальности исследуемый параметр, как правило, зависит от множества факторов.

Так, например, при прогнозировании спроса идентифицируются факторы, определяющие спрос, определяются взаимосвязи, существующие между ними, и прогнозируются их вероятные будущие значения; из них при условии реализации условий, для которых уравнение множественной регрессии остается справедливым, выводится прогнозное значение спроса.

Все, что касается множественной регрессии, концептуально является идентичным парной регрессии, за исключением того, что используется более чем одна переменная. Под этим углом зрения слегка изменяются терминология и статистические расчеты.

Многофакторное уравнение множественной регрессии имеет следующий вид:

у = а + b1х1 + b2х2 + b3 х3 + + bm хm,

где у – зависимая или прогнозируемая переменная;

x1, х2, ., хm – независимые переменные;

а – свободный член уравнения;

b1, b2, ., bm – коэффициенты условно-чистой регрессии;

m – число независимых переменных (факторных признаков).

Термин «коэффициент условно-чистой регрессии» означает, что каждая из величин b измеряет среднее по совокупности отклонение зависимой переменной (результативного признака) от ее средней величины при отклонении зависимой переменной (фактора) х от своей средней величины на единицу ее измерения и при условии, что все прочие факторы, входящие в уравнение регрессии, закреплены на средних значениях, не изменяются, не варьируются.

Ограничением прогнозирования на основе регрессионного уравнения, тем более парного, служит условие стабильности или, по крайней мере, малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится «внешняя среда» протекающего процесса, прежнее уравнение регрессии потеряет свое значение.

Следует соблюдать еще одно ограничение: нельзя подставлять значения факторного признака, значительно отличающиеся от входящих в базисную информацию, по которой вычислено уравнение регрессии. При качественно иных уровнях фактора, если они даже возможны в принципе, были бы иными параметры уравнения. Можно рекомендовать при определении значений факторов не выходить за пределы трети размаха вариации – как за минимальное, так и за максимальное значение признака-фактора, имеющееся в исходной информации.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения фактора, называют точечным прогнозом. Вероятность точной реализации такого прогноза крайне мала. Необходимо сопроводить его значение средней ошибкой прогноза или доверительным интервалом прогноза, в который с достаточно большой вероятностью попадают прогнозные оценки. Средняя ошибка является мерой точности прогноза на основе уравнения регрессии. Существуют усовершенствованные методы парной регрессии, в какой-то степени преодолевающие его недостатки.

Простейшими методами прогнозирования спроса на основе статистической маркетинговой информации являются экстраполяционные методы, основанные на анализе временных рядов.

Многие данные маркетинговых исследований представляются для различных интервалов времени, например, на ежегодной, ежемесячной и др. основе. Такие данные называются временными рядами.

Страницы: 9 10 11 12 13 14 15 16 17 18

Смотрите также

Специфика маркетинговых технологий в отраслях сферы малого бизнеса
♦ Маркетинг В сфере товарного обращения ♦ Маркетинг в строительстве ♦ Концепции маркетинга услуг. Маркетинговые стратегии в сфере услуг ♦ Аутсорсинг сетевой кооперации ♦ ...

Сущность аудита
Аудит имеет уже достаточно большую историю. Первые независимые аудиторы появились еще в XIX в. в акционерных компаниях Европы. Слово «аудит» в разных переводах означает «он слышит& ...

Процесс маркетинговых исследований
Процесс маркетинговых исследований включает следующие этапы и процедуры: I. Определение проблемы и целей исследования. I.1. Определение потребности в проведении маркетинговых исследований. I.2. О ...