Балансовые модели в маркетинге
Страница 5

В общем виде модель межпродуктового баланса имеет вид:

что по форме совпадает с моделью (25.5) межотраслевого баланса в стоимостном выражении, однако здесь все величины даны в натуральных измерителях. Для примера приведем значения некоторых коэффициентов прямых материальных затрат аij: на изготовление одного грузового автомобиля расходуется в среднем 2,5 т стального проката, 0,5 т чугуна, 2 тыс. кВт · ч электроэнергии, 1 м3 пиломатериалов и т.д.

Рассмотрим решение одной из задач маркетинга на основе модели межпродуктового баланса. В моделях межпродуктовых балансов в состав объема конечной продукции Yi входит количество продукции, направляемой на прирост запасов и резервов. Величина этого прироста по каждой продукции часто задается вне модели, что определяет общее количество продукции каждого наименования, идущее на прирост запасов, но не дает возможности узнать, в каком объеме требуются эти запасы для обеспечения непрерывности производства, какова оптимальная величина совокупных запасов для данной продукции.

Для того чтобы получить ответ на эти вопросы, необходимо наряду с прямыми затратами отражать величину запасов и резервов в том разделе баланса, где по строкам показываются производственные связи и затраты одного вида продукта на все другие виды, а по столбцам – затраты различных продуктов на производство продукта данного определенного вида.

Эти проблемы можно решить путем введения так называемых коэффициентов запасоемкости.

Дадим определение:

коэффициент запасоемкости sij показывает, какое количество запаса продукции i-го вида необходимо при производстве единицы продукции j-го вида. Если Sij есть величина запаса продукции i-го вида, используемого для производства j-й продукции, а Xj – общий объем производства j-й продукции, то величину коэффициента запасоемкости можно определить по формуле:

На практике коэффициенты запасоемкости можно рассчитать на основе статистических данных за предыдущие годы.

Если в схему межпродуктового баланса ввести показатели запасоемкости, то уравнение (25.12) примет вид:

Введя наряду с ранее использованными матричными величинами матрицу коэффициентов запасоемкости S = (sij), можно модель (25.14) записать в матричном виде:

Х = А · Х + S · X + Y, (25.14')

откуда выводится следующее соотношение:

Х = (Е - А - S)-1 · Y. (25.15)

Матрица ВS = (Е – А – S)-1 аналогична матрице В коэффициентов полных материальных затрат, но наряду с прямыми и косвенными затратами включает также затраты запасов на единицу конечной продукции.

Балансовые модели могут быть полезны и при реализации сбытовой функции маркетинга, в частности в вопросах ценообразования. В условиях формирования рыночных цен они помогают выявить, например, дисбаланс межотраслевых и внутриотраслевых цен при свободном рыночном ценообразовании. Рассмотрим прежде всего задачу расчета системы цен по формуле стоимости на основе межотраслевого баланса, модель которого рассматривалась в предыдущих параграфах данной главы.

В дополнение к ранее принятым обозначениям через tj обозначим коэффициент прямых затрат труда в j-й отрасли, через Pj – цену единицы j-го продукта, через Pt – денежный эквивалент новой стоимости, созданной в единицу рабочего времени, через Vn – нормативную ставку оплаты единицы рабочего времени, через а – норму прибавочного продукта по отношению к необходимому (норму прибыли). Тогда в балансе для каждого j-го продукта должно соблюдаться равенство:

(25.16) (25.16)

Соотношения (25.16) представляют собой систему п линейных уравнений с (п + 1) неизвестными. Задавая значение одной из неизвестных, можно определить все остальные цены, решая получившуюся систему уравнений любым из известных методов.

Для величины Pt справедлива следующая формула:

Pt = Vn (1 + α) . (25.16)

Считая величину нормативной ставки оплаты единицы рабочего времени (единицы затрат труда) Vn известной, нормировать коэффициент а можно путем присоединения к системе уравнений (25.16) дополнительного (п + 1)-го уравнения, используя объемные показатели межотраслевого баланса. Полагая для простоты, что сумма доходов населения, не занятого в производственной сфере, равна нулю, уравнение можно записать в следующем виде:

Это уравнение отражает требование соответствия доходов населения и общей стоимости товаров конечного потребления.

Кроме определения системы цен по формуле стоимости на базе уравнений межотраслевого баланса можно рассчитывать новые перспективные цены и индексы их динамики в сравнении с уровнями базисного года. Пусть в действующих отраслевых ценах объем прямых межотраслевых поставок, объем валовой продукции, коэффициент прямых материальных затрат и условно чистый доход для j-й отрасли были равны соответственно хij, Xj, aij, Zj, a аналогичные величины в новых перспективных ценах – х*ij, Х*j, а*ij, Z*j.

Страницы: 1 2 3 4 5 6

Смотрите также

Оценка эффективности маркетинга в сфере малого бизнеса
♦ Принципы эффективности управления маркетингом ♦ Показатели качества маркетинга ♦ Контроль в маркетинге ♦ Вопросы и задания ♦ Ситуационные и практические задачи b ...

Анализ рекламных текстов
Исторически реклама была, прежде всего, информированием, но, развиваясь, в новое и новейшее время значительно расширила сферу своего влияния и присутствия. Основны ...

Реализация продукта
Реализация – это акт обращения к рынку, наиболее важная функция каждой компании. Если продукт производится, но не продается, то затраченные на него ресурсы просто пропадут. Производство организует ...